Liczby niewymierne to te liczby rzeczywiste, które nie są liczbami wymiernymi. Oznacza to, że liczby niewymiernej nie można zapisać w postaci ilorazu dwu liczb całkowitych.
Rozwinięcie dziesiętne liczby niewymiernej jest nieskończone i nieokresowe.
Przykłady liczb niewymiernych: \[\sqrt{2} \], π, 0,123456789101112131415... (zapisy dziesiętne kolejnych liczb naturalnych).
Pierwiastek arytmetyczny drugiego stopnia z liczby naturalnej jest liczbą wymierną wtedy i tylko wtedy, gdy liczba ta jest kwadratem liczby naturalnej. Zatem na przykład \[\sqrt{99992} \] jest liczbą niewymierną.
Liczby niewymierne odkryli Pitagorejczycy, w związku z twierdzeniem Pitagorasa. Zauważyli oni mianowicie, że przekątna kwadratu o boku 1 jest niewspółmierna z bokiem, co właśnie oznacza niewymierność liczby \[\sqrt{2} \] (
Liczby niewymierne są szczególnym przypadkiem: Szczególnym przypadkiem liczb niewymiernych są:
Publikacja wraz ze zdjęciami jest udostępniona w Encyklopedii "Zgapedia" części portalu zgapa.pl. Treść objęta jest licencją GNU FDL Wolnej Dokumentacji w wersji 1.3 lub dowolnej pózniejszej opublikowanej przez Free Software Foundation i została ona opracowana na podstawie Wikipedii, tutaj możesz znaleźć artykuł źródłowy oraz autorów. Warunki użytkowania Encyklopedii znajdziesz na tej stronie.
Prezentowane filmy poczhodzą z serwisu YouTube, portal zgapa.pl nie jest ich autorem i nie ponosi odpowiedzialności za ich treści.