Definicja

Reguła faz lub reguła faz Gibbsa to ważna zależność obowiązująca dla każdego układu w równowadze termodynamicznej łącząca liczbę faz w układzie, liczbę składników niezależnych oraz liczbę stopni swobody:
\[s = \alpha - \beta + 2 \]
gdzie:
  • \[s \] - liczba stopni swobody, czyli liczba zmiennych intensywnych, które można zmieniać bez jakościowej zmiany układu (bez zmiany liczby faz w równowadze)
  • \[\alpha \] - liczba niezależnych składników, a więc takich, które nie dają się określić za pomocą zależności chemicznych poprzez stężenia innych składników (niezależnych).
  • \[\beta \] - liczba faz, a więc postaci materii jednorodnej chemicznie i fizycznie (np. roztwór, faza gazowa, kryształy o określonym składzie)

Reguła faz w układzie gdzie zachodzą reakcje chemiczne

Dla układów w których zachodzą reakcje chemiczne często podaje się również inną (w pewnym sensie uproszczoną) wersję reguły faz:
\[s = \alpha - \beta + 2 + r \]
gdzie:
  • \[r \] - ilość reakcji chemicznych zachodzących w układzie

Punkty inwariantne

Ważnym pojęciem jest tzw. punkt niezmienniczy albo inwariantny dla którego mamy:
\[s = 0 \]
W takim punkcie nie można zmienić żadnej zmiennej intensywnej bez zmiany ilości faz w układzie - przykładem takiego punktu jest punkt potrójny dla układu jednofazowego (np. punkt potrójny wody) lub punkt poczwórny dla układu dwuskładnikowego.

Układ jednoskładnikowy

Liczba składników, α = 1, stąd liczba stopni swobody s = 3 - β gdzie β to ilość faz w stanie równowagi.

Punkt potrójny

W punkcie potrójnym liczba faz w stanie równowagi β = 3, stąd liczba stopni swobody s = 1 - 3 + 2 = 0. Nie można wówczas zmienić ani żadnej ze zmiennych intensywnych (temperatury ani ciśnienia) bez opuszczenia równowagi 3 faz.

Krzywe równowagi

Krzywe równowagi, linie równowagi albo krzywe współistnienia określają współrzędne ciśnienia i temperatury (p,T) punktów na wykresie fazowym oznaczających β = 2 fazy w równowadze termodynamicznej. Dla krzywych równowagi w układzie jednoskładnikowym otrzymujemy s = 1 - 2 + 3 = 1 stopień swobody, a więc możliwość zmiany ciśnienia albo temperatury (ale nie obu naraz).

Równowaga ciecz-para (parowanie - skraplanie)

W równowadze są 2 fazy (β = 2), stąd liczba stopni swobody s = 1 - 2 + 2 = 1. Można wówczas zmienić temperaturę albo ciśnienie - jeżeli zmienimy temperaturę, ciśnienie musi zmienić się samo, jeżeli zmienimy ciśnienie, wówczas temperatura układu musi się odpowiednio dostosować - nie można zmienić dowolnie (nawet o niewielkie wartości) naraz obu parametrów intensywnych bez opuszczenia krzywej równowagi ciecz-para.

Układ powyżej punktu krytycznego (gaz)

Po przekroczeniu punktu krytycznego (końcowy punkt krzywej ciecz-para od strony wysokich ciśnień i temperatur), mamy do czynienia z 1 fazą (gazową - nie mogą istnieć ani ciecz ani ciało stałe), a więc liczba stopni swobody s = 1 - 1 + 2 = 2, czyli można zmieniać równocześnie 2 zmienne intensywne: ciśnienie i temperaturę.

Równowaga ciecz-ciało (topnienie - krzepnięcie) stałe

W równowadze są 2 fazy, liczba stopni swobody j.w. = 1. Można zmieniać temperaturę albo ciśnienie, ale nie obie zmienne jednocześnie.

Równowaga para-ciało stałe (sublimacja - kondensacja)

W równowadze są 2 fazy, liczba stopni swobody j.w. = 1. Można zmieniać temperaturę albo ciśnienie, ale nie obie zmienne równocześnie.

Czysta pojedyncza faza

Obszar (powierzchnia na wykresie fazowym) poza krzywymi współistnienia i punktem potrójnym oznacza czystą pojedynczą fazę:
  • powierzchnia ograniczona krzywą ciało stałe-gaz i krzywą ciecz-gaz (niskie ciśnienia i wysokie temperatury) określa obszar występowania pary (a powyżej punktu krytycznego - gazu)
  • powierzchnia ograniczona krzywą ciało stałe-ciecz i krzywą ciecz-gaz (wysokie ciśnienia i wysokie temperatury) określa obszar występowania cieczy (tylko poniżej punktu krytycznego - powyżej jest tylko 1 faza gazowa)
  • powierzchnia ograniczona krzywą ciało stałe-gaz i krzywą ciało stałe-ciecz (wysokie ciśnienia i niskie temperatury) określa obszar występowania ciała stałego

Punkt poczwórny

Z reguły faz Gibbsa wynika, że dla czystej chemicznie substancji nie może istnieć punkt poczwórny, czyli punkt gdzie w równowadze znajdują się cztery fazy (punkt poczwórny może istnieć w układach zawierających więcej niż jeden czysty składnik, np. woda + NaCl).

Układ dwuskładnikowy

Jeżeli w układzie znajdują się 2 składniki (α = 2), wówczas w takim układzie mogą istnieć punkty poczwórne (s = 2 - 4 + 2 = 0). Dla każdej z powyższych równowag podanych dla układu jednoskładnikowego ilość stopni swobody rośnie dopowiednio o 1:
  • w punkcie potrójnym można zmieniać 1 zmienną intensywną - ciśnienie albo temperaturę albo skład układu (ilość drugiego składnika obliczamy jako xB = 1 - xA)
  • na linii równowagi (krzywej współistnienia) (2 fazy) można zmieniać 2 zmienne intensywne
  • na płaszczyznach równowagi (1 faza) mozna zmieniać jednocześnie 3 zmienne intensywne
Publikacja wraz ze zdjęciami jest udostępniona w Encyklopedii "Zgapedia" części portalu zgapa.pl. Treść objęta jest licencją GNU FDL Wolnej Dokumentacji w wersji 1.3 lub dowolnej pózniejszej opublikowanej przez Free Software Foundation i została ona opracowana na podstawie Wikipedii, tutaj możesz znaleźć artykuł źródłowy oraz autorów. Warunki użytkowania Encyklopedii znajdziesz na tej stronie.
Prezentowane filmy poczhodzą z serwisu YouTube, portal zgapa.pl nie jest ich autorem i nie ponosi odpowiedzialności za ich treści.