Polaryzacja to własność fali poprzecznej (np. światło). Fala spolaryzowana oscyluje tylko w pewnym wybranym kierunku. Fala niespolaryzowana może być traktowana jako złożenie wielu fal drgających w różnych kierunkach. W naturze większość źródeł promieniowania elektromagnetycznego wytwarza fale niespolaryzowane. Polaryzację można rozpatrywać tylko dla fal rozchodzących się w trójwymiarowej przestrzeni, czyli nie odnosi się ona do fal morskich. Fale dźwiękowe również nie mogą być opisywane przez polaryzację, bo są falami podłużnymi.

Podstawy: fale płaskie

Najłatwiej jest sobie wyobrazić polaryzację płaskich fal sinusoidalnych. W większości przypadków takie podejście dla światła jest zgodne z rzeczywistością. Płaska fala elektromagnetyczna cechuje się tym, że wektory pola magnetycznego oraz elektrycznego leżą w jednej płaszczyźnie prostopadłej do kierunku propagacji fali. Polaryzacja odnosi się wyłącznie do wektora pola elektrycznego. Wektor ten można rozłożyć na dwie składowe prostopadłe do siebie. Zmiany tych składowych dają się opisać funkcjami sinusoidalnymi. Znaczy to że wystarczy podać ich fazę, amplitudę oraz częstotliwość. W tym przypadku obie składowe zawsze mają taką samą częstotliwość równą częstotliwości fali elektromagnetycznej.
Umieszczone tutaj ilustracje przedstawiają zmiany wektora pola elektrycznego (niebieski) w czasie razem z jego składowymi na dwie prostopadłe osie (czerwony/lewy oraz zielony/prawy) wykonanych przez wektora w płaszczyźnie czoła fali (różowe):
Liniowa
Kołowa
Eliptyczna


Przypadek po lewej jest szczególny, ponieważ dwie składowe wektora pola elektrycznego opisują funkcje sinusoidalne o fazach przesuniętych o 180°. Wektor zawsze znajduje się w pewnej płaszczyźnie nazywaną płaszczyzną polaryzacji.
Jeżeli funkcje opisujące długość obu składowych wektora mają różnice faz równą 0° lub 180°, to fala ma polaryzację liniową. Kierunek polaryzacji zależy od stosunku amplitud funkcji opisujących składowe oraz tego, czy różnica faz wynosi 180° czy 0°.
Przypadek środkowy też jest szczególny. Sinusoidy opisujące prostopadłe składowe wektora są przesunięte dokładnie o 90°, a ich amplitudy są takie same. W efekcie wektor pola elektrycznego zatacza okręgi. Jest to polaryzacja kołowa. W zależności do tego, czy fazy są przesunięte o 90° czy 270°, mówimy o polaryzacji kołowej prawoskrętnej lub polaryzacji kołowej lewoskrętnej. Wynika to faktu, że wektor może się obracać albo w lewo albo w prawo
Przypadek po prawej jest najbardziej ogólny. Różnica faz jest nierówna wielokrotności 90°. Koniec wektora pola elektrycznego zatacza elipsy. W takiej sytuacji mówimy o polaryzacji eliptycznej. Efekt jest podobny jak dla złożenia na oscyloskopie dwóch fal sinusoidalnych (jedna na oś X, druga na Y) o różnych fazach oraz amplitudach (figura Lissajous).

Promieniowanie niekoherentne

Obraz fali przedstawiony powyżej jest ogromnym uproszczeniem. W rzeczywistości większość fal nie jest wytwarzana przez jedno źródło, lecz przez bardzo wiele. W takiej sytuacji wynikowe promieniowanie jest sumą emisji wszystkich źródeł. Fale o różnych amplitudach, fazach i częstotliwościach interferują ze sobą dając promieniowanie całkowicie pozbawione polaryzacji. Drgania występują we wszystkich możliwych kierunkach. Jednak okazuje się, że w pewnych szczególnych przypadkach można podejść do problemu statystycznie. Wystarczy, że większa część mocy promieniowania będzie skupiona w falach oscylujących tylko w jednej płaszczyźnie i już przybliżony opis podany powyżej będzie dosyć bliski rzeczywistości. Gdybyśmy końce wektorów pola elektrycznego dla takiego promieniowania nanieśli na wykres, otrzymamy rozmazany kształt przypominający elipsę lub linię. Możemy w takiej sytuacji mówić o poziomie polaryzacji oraz polaryzacji częściowej.

Parametryczny opis polaryzacji

Polaryzacja_światła -

Aby opisać polaryzację parametrycznie, można posłużyć się elipsą odpowiadającą torowi końca wektora pola elektrycznego. Często jako parametry zapisuje się kąt pomiędzy osią X, a główną półosią elipsy (ψ) oraz współczynniku eliptyczności czyli stosunku głównej i mniejszej półosi elipsy (ε). Czasami używa się też współczynnika kąta eliptyczności (χ) liczonego jako arkus tangens ε. Na schemacie oznaczono poszczególne współczynniki.
W niektórych przypadkach lepiej jest opisać ruch końca wektora pola elektrycznego korzystając z techniki stosowanej w obwodach prądu zmiennego. Posługujemy się tutaj liczbami zespolonymi:
\[ \mathbf{e} = \begin{bmatrix}
a_1 e^{i \pi \theta_1} \\ a_2 e^{i \pi \theta_2} \end{bmatrix} . \]
Składowa urojona i rzeczywista odpowiadają obu prostopadłym osiom współrzędnych.

Życie codzienne

Aby uzyskać światło spolaryzowane można wykorzystać filtr polaryzacyjny. Ma on zdolność do przepuszczania tylko fal świetlnych o polaryzacji liniowej. Kierunek tej polaryzacji jest stały i ściśle związany z konstrukcją filtra. Jeżeli przepuścimy światło niespolaryzowane przez dwa takie filtry i zaczniemy je obracać, to światło na zmianę będzie przygasać oraz rozbłyskać. Kiedy dwa filtry polaryzacyjne są ustawione tak, że przepuszczają tylko fale oscylujące w prostopadłych płaszczyznach, to światło nie przechodzi. Jeżeli płaszczyzny polaryzacji są takie same, to efekt jest taki jak dla jednego filtra. Okulary przeciwsłoneczne z filtrem polaryzacyjnym zmniejszają jasność nieba w słoneczny dzień.

Technologia

Polaryzacja jest praktyczne wykorzystywana w wyświetlaczach ciekłokrystalicznych (LCD). Ciekły kryształ, do którego przyłożono napięcie elektryczne powoduje zmianę polaryzacji przechodzącego przez niego światła. Jeżeli połączymy szereg kryształów oddziałujących z różnymi długościami promieniowania, to możemy w ten sposób uzyskać obraz kolorowy. Zmiana polaryzacji światła odnosi się tylko do promieni biegnących prostopadle do płaszczyzny ekranu. W efekcie obraz z wyświetlacza LCD staje się niewyraźny jeżeli patrzymy na niego z boku. Ludzkie oko nie dostrzega polaryzacji i dlatego ekran musi zawierać filtry polaryzacyjne, co zwiększa jego ciężar oraz powoduje, że jest sztywny.
Kolejnym praktycznym wykorzystaniem zjawiska polaryzacji jest technika projekcji w kinach IMAX. Widz zakłada specjalne okulary wyposażone w filtry polaryzacyjne. Płaszczyzny polaryzacji w okularze lewym i prawym są odwrócone o 90 °. Projektor jest podwójny. Równocześnie wyświetlane są dwa obrazy. Każdy z obiektywów projektora też zawiera filtr polaryzacyjny. Jeden obrócony jest względem drugiego o 90° W efekcie jedno oko widzi film wyświetlany przez lewy projektor, a drugie przez prawy. Kamera IMAX również składa się z dwóch obiektywów i rejestruje równocześnie dwa obrazy. Ich osie optyczne są przesunięte względem siebie o odległość zbliżoną do rozstawu ludzkich oczu. W efekcie do widza dociera taki sam obraz, jak gdyby osobiście znajdował się na planie filmowym. Zdolność człowieka to widzenia stereoskopowego powoduje, że pojawia się złudzenie głębi. Obraz “wychodzi” z ekranu. Filtr polaryzacyjny jest używany w kinie IMAX, bo ma małą masę i nie utrudnia oglądania pokazu filmowego.
Jeżeli jakiś przezroczysty materiał jest anizotropowy, to często powoduje zmiany polaryzacji przechodzącego przez niego światła. Jest tak w przypadku kryształów, jednak źródłem anizotropii może być również występowanie naprężeń wewnątrz materiału. Zjawisko to można wykorzystać w defektoskopii (wczesnym wykrywaniu uszkodzeń maszyn). Inne zastosowanie to badanie prototypów. Model części urządzenia wykonany z przezroczystego materiału i może zostać poddany próbom wytrzymałościowym. Odpowiedni układ optyczny pozwala na obserwację charakterystycznych prążków wyznaczającym linie naprężeń wewnątrz materiału. Technikę tą wykorzystuje się w elastooptyce.
Korzystając z własności światła spolaryzowanego wytwarzanego przez różne kryształy możliwe jest rozróżnianie ich rodzajów. Mineralodzy korzystają z mikroskopów polaryzacyjnych, w których poszczególne ziarna kryształów mienią się różnymi kolorami.
Niektóre roztwory substancji chemicznych mają zdolność do zmiany płaszczyzny polaryzacji przechodzącego przez nie światła. Można to wykorzystać do oznaczenia stężenia związku w próbce.
Spolaryzowane liniowo wiązki fal radiowych wykorzystywane są w technice radarowej.
W astronomii obserwacja polaryzacji światła pozwala określić, czy zostało ono rozproszone przed dotarciem do teleskopu.

Zoologia

Niektóre zwierzęta mają zdolność do postrzegania polaryzacji światła. Jednym z zastosowań tej zdolności jest określanie kierunku. Płaszczyzna liniowej polaryzacji światła rozproszonego przez atmosferę (niebo) jest prostopadła do kierunku, z którego świeci Słońce. Z tej własności światła korzystają niektóre owady w tym pszczoły. Mózg pszczoły rejestruje odległość oraz azymut względem Słońca na trasie jaką pokonuje ona wracając z nektarem do gniazda. W środku owad rozpoczyna specjalny taniec, którym przekazuje te informacje innym pszczołom. Dzięki temu wszystkie zbieraczki nektaru mogą łatwo odnaleźć bogate źródło pożywienia.
Polaryzacja jest postrzegana przez ośmiornice, kałamarnice oraz mątwy. Zwierzęta te wykorzystują spolaryzowane światło do komunikacji. Ich ciała pokrywają wzory widoczne tylko przez filtry polaryzacyjne. Niektóre głowonogi mają tez zdolność dynamiczne zmiany tych wzorów. W ten sposób mogą przekazywać sobie sygnały godowe lub odstraszać napastników.
Polaryzacja światła jest widoczne również dla oczu ptaków. Oprócz nawigacji ptaki używają uzyskanych w ten sposób informacji do poszukiwania prądów wznoszących pozwalających im na szybowanie bez wydatkowania energii.

Bibliografia (ang.)

  • Principles of Optics, M. Born & E. Wolf, Cambridge University Press, 7th edition 1999, ISBN 0521642221
  • Fundamentals of polarized light : a statistical optics approach, C. Brosseau, Wiley, 1998, ISBN 0-471-14302-2
  • Polarized Light, Production and Use, William A. Shurcliff, Harvard University Press, 1962.
  • Optics, Eugene Hecht, Addison Wesley, 4th edition 2002, hardcover, ISBN 0-8053-8566-5
  • Polarised Light in Science and Nature, D. Pye, Institute of Physics Publishing, 2001, ISBN 0750306734
  • Polarized Light in Nature, G. P. Können, Translated by G. A. Beerling, Cambridge University Press, 1985, hardcover, ISBN 0-521-25862-6
Publikacja wraz ze zdjęciami jest udostępniona w Encyklopedii "Zgapedia" części portalu zgapa.pl. Treść objęta jest licencją GNU FDL Wolnej Dokumentacji w wersji 1.3 lub dowolnej pózniejszej opublikowanej przez Free Software Foundation i została ona opracowana na podstawie Wikipedii, tutaj możesz znaleźć artykuł źródłowy oraz autorów. Warunki użytkowania Encyklopedii znajdziesz na tej stronie.
Prezentowane filmy poczhodzą z serwisu YouTube, portal zgapa.pl nie jest ich autorem i nie ponosi odpowiedzialności za ich treści.