Mleko to wydzielina gruczołów mlekowych samic ssaków służąca jako pokarm dla młodych osobników. Charakter fizyczny - emulsja.
Mimo że przez wiele lat stosowano mleko krowie oraz sztucznie przygotowywane preparaty mleczne, najbardziej wartościowym i właściwym pokarmem dla niemowląt jest mleko ludzkie.
Najczęściej wykorzystywane przez człowieka jako produkt spożywczy jest mleko krowie. Jednak w niektórych krajach przeważa użycie mleka innych gatunków zwierząt. Mleko bawole w Indiach, a także we Włoszech, na Węgrzech, na Bałkanach i znacznej części krajów azjatyckich. Mleko owcze pija się w znaczniejszych ilościach w Hiszpanii, a przeznacza się je do wyrobu serów także we Francji i Polsce na Podhalu; mleko kozie w basenie Morza Śródziemnego; wielbłądzie w niektórych krajach arabskich oraz kobyle w Mongolii. Lapończycy używają mleka reniferów, Peruwiańczycy lamy, a ludność Tybetu jaków. Wykorzystuje się tu fakt, że gruczoły produkują mleko tak długo jak jest ono z nich ssane - czyli w naturze do czasu przejścia młodych do samodzielnego odżywiania się. Dojąc regularnie utrzymuje się produkcję mleka w sutkach, pomimo iż młode już dawno się usamodzielniły.
Skład mleka różnych gatuków zwierząt dość znacznie się różni - mleko krowie ma ok. 4% tłuszczu, a renifera 22%. W mniejszym stopniu występują różnice między poszczególnymi rasami i osobnikami.
Mleko niektórych ssaków nie nadaje się dla człowieka. Na przykład mleko fok i wielorybów zawiera 12 razy więcej tłuszczu, a także więcej białka niż mleko krowie, natomiast nie zawiera prawie węglowodanów. Istotnym składnikiem mleka jest również laktoza - dwucukier nadający mleku charakterystyczny słodkawy posmak.
Mleko stanowi podstawowy produkt do wyrobu różnych napojów mlecznych i serów. W Mongolii z kobylego mleka produkuje się napój alkoholowy - kumys. Mleko także może być poddane zagęszczaniu, odtłuszczaniu i odwadnianiu (mleko w proszku). Sądzi się, że umiejętność zagęszczania mleka opanowali już w XIII wieku Mongołowie.

Białka

Synteza białek mleka, tj. kazeiny, β-lakto-globuliny i α-lakto-albuminy odbywa się w mikrokosmkach. Białka tworzone są w 90% z wolnych aminokwasów, a w pozostałej części z peptydów i glukoproteidowych frakcji globularnych, doprowadzanych z krwią do komórek mlekotwórczych. Pozostałe białka: albumina surowicy krwi i immunoglobuliny przenikają do mleka bezpośrednio z krwi. Źródłem białka N-aminokwasowego, potrzebnego do syntezy białek mleka, są białka zawarte w paszy, jak i również białka drobnoustrojów obficie rozwijających się w żwaczu, trawione w dalszych odcinkach przewodu pokarmowego.
Do wytworzonych frakcji kazeinowych dołączany jest w komórkach golgiego fosfor w postaci reszt ortofosforowych. Następnie wiązaniem estrowym zostaje przyłączona seryna, co umożliwia samoistne formowanie się miceli kazeinowych z udziałem jonów wapniowych, fosforanowych i cytrynianowych. Ze wszystkich związków azotowych obecnych w mleku wyróżnia się: związki azotowe niebiałkowe (5%), kazeinę (75-80%), białka serwatkowe (15-20%).
  • Kazeina - to najważniejsze białko mleka. Zawartość w mleku krowim wynosi 2,4 - 2,6 %. Skład elementarny kazeiny: węgiel C (53%), wodór H (7%), tlen O (22%), azot N (15,65%), siarka S (0,76%), fosfor P (0,85%).
Kazeina występuje w mleku w postaci miceli tworzących roztwór koloidalny. Micele mają kształt sferyczny, ich średnica to 50-250 nm. Masa micelarna to 100-150 mln [1]. Micele są wyraźnie widoczne pod mikroskopem. Struktura miceli jest porowata, a jej cząstki wypełniają mniej niż połowę objętości. Sprzyja to wiązaniu wody, jonów, laktozy i enzymów. W 1 ml mleka jest 7 · 1013 miceli. Micele stanowią łącznie od 5 do 6 % objętości mleka.  Micele utworzone są z podjednostek frakcji kazeinowych. W mleku krowim 40% kazeiny stanowi frakcja α, 30 % frakcja β, a dalsze 15% frakcja κ. W skład każdej miceli wchodzi od 300 do 500 podjednostek. Są połączone jonami wapniowymi, fosforanowymi i cytrynianowymi.
  • Albuminy - są reprezentowane przez alfa-lakto-albuminę, β-lakto-globulinę i albuminę serum, tzw. albuminę surowicy krwi. Białka te w mleku występują w rozproszeniu i są bardzo trudne do wydzielenia w postaci skrzepu. Białka te nie zawierają fosforu, natomiast bogate są w lizynę, a β-lakto-globulina ulega denaturacji podczas silnego ogrzania, co ma niekorzystny wpływ na wydzielanie skrzepu przy pomocy enzymu podpuszczki. α-lakto-albumina jest bardziej odporna na wysokie temperatury. Pasteryzacja (80-90 °C) nie powoduje jej koagulacji. W związku z tym zawsze pozostaje ona w serwatce.
  • Globuliny wysokocząsteczkowe (immunoglobuliny). W mleku normalnym jest ich około 0,06%. W dużych ilościach występują w siarze. Obserwuje się je również u krów z zapaleniem wymienia (mastitis). Mleko mastitisowe to mleko od krów z zapaleniem wymienia. Wyróżnia się 3 grupy immunoglobulin:
    • Typ G - stanowi 90% całości globulin mleka o masie cząsteczkowej 150 - 170 tys.
    • Typ M - o masie cząsteczkowej 900 tys. - 1 mln.
    • Typ A - o masie cząsteczkowej 300 - 500 tys.

Cukry

Cukier mleczny, laktoza, jest w całości wytworem gruczołu mlekowego krowy. W 80% powstaje z glukozy a w 20% z octanów.
  • Laktoza jest najważniejszym węglowodanem mleka. Zawartość w mleku krowim to 4,5-4,8%. Laktoza jest dwucukrem zbudowanym z D-glukozy i D-galaktozy, które są połączone wiązaniem β-glikozydowym pomiędzy 1. węglem galaktozy a 4. węglem glukozy. Galaktoza występuje zawsze w formie β, a glukoza w α lub β. Laktoza należy do cukrów redukujących. Ulega również wielokierunkowym zmianom pod wpływem bakterii i drożdży. Pierwszym etapem tych przemian jest najczęściej hydroliza przy udziale enzymów laktazy. Powstałe w ten sposób cukry proste: glukoza i galaktoza w warunkach tlenowych utleniają się do CO2 i H2O, natomiast w warunkach beztlenowych ulegają fermentacji: alkoholowej i mlekowej. Laktoza jest odporna na wysokie temperatury, nawet 120 °C. Dopiero w 170 °C traci wodę hydratacyjną i przekształca się w karmel.

Tłuszcz mleczny

Tworzony jest z glicerolu i kwasów tłuszczowych. Glicerol powstaje w trakcie przemian glukozy, a nasycone kwasy tłuszczowe z fermentacji błonnikowej zachodzącej w żwaczu. Nienasycone kwasy tłuszczowe stanowiące od 3 do 5 % tłuszczu dostarczane są z paszą, a następnie rozprowadzane z limfą lub w połączeniach lipoproteinowych z krwią. Część kwasów nienasyconych pochodzących z paszy ulega jednak uwodornieniu (nasyceniu) w żwaczu przez mikroflorę fermentacyjną.
  • Ogólna zawartość tłuszczu mlecznego w mleku to 2,7 - 5,5%. Blisko 80% masy tłuszczu reprezentują kuleczki o średnicy 2-6 mikronów. Pod koniec okresu laktacji średnica kuleczek ulega zmniejszeniu. Silny stopień rozproszenia (dyspersji) ilustruje fakt, że w 1 ml mleka jest od 2 do 6 miliardów kuleczek. Na powierzchni kuleczek są tzw. otoczki fosfolipidowobiałkowe. Natomiast wewnątrz jest półpłynny tłuszcz. Tłuszcz mleczny zbudowany jest głównie z glicerolu i kwasów tłuszczowych (98%). Pozostałe 2% stanowią: cholesterol, fosfolipidy, karoteny, witaminy. Podstawowe kwasy tłuszczowe: linolowy, linolenowy i arachidowy stanowią grupę niezbędnych nienasyconych kwasów tłuszczowych (NNKT, witamina F). W mleku krowim występuje również dużo kwasu oleinowego, który stanowi 37% zawartości tłuszczu mleka. Głównym fosfolipidem mleka jest lecytyna, która ma zdolności stabilizowania emulsji. Zawartość lecytyny: 0,02 - 0,035%. Cholesterol występuje z tłuszczem w stosunku 1:100. Strawność tłuszczu mlecznego jest bardzo wysoka, 97-99. Tak wysoka strawność wynika z dużego rozproszenia kuleczek tłuszczowych w mleku jak i również z niskiej temperatury topnienia tłuszczu (31-42 °C).

Substancje mineralne

  • Wapń. W mleku krowim od 1,1 do 1,2 g/l. Ok 2/3 całego wapnia związane jest z kazeiną w postaci dwu- i trójwapniowego fosforanu. 10% wapnia występuje w formie jonowej, a ok. 20% jako niezjonizowane węglany, fosforany i cytryniany.
  • Fosfor. W mleku krowim 0,093-0,096%. W postaci fosforanów wapnia, magnezu i potasu. Związany jest także estrowo z kazeiną, tłuszczami i cukrowcami.
  • Potas. Występuje głównie w postaci wolnych jonów. Zawartość waha się w granicach 1,35-1,55 g/l. Zawartość potasu zależna jest od zawartości sodu. Im mniej sodu, tym więcej potasu.
  • Chlor, Sód. Występują w mleku jako wolne jony, ale w ścisłym powiązaniu z jonami wapnia i potasu. Zasadnicza rola chloru i sodu polega na utrzymaniu odpowiedniego ciśnienia osmotycznego mleka (wspomaga ono również laktozę).
  • Magnez. Występuje w mleku zarówno w postaci związków rozpuszczonych (73-75% ogólnej ilości), jak i w postaci koloidalnej - fosforanów i cytrynianów. Tylko niewielka ilość magnezu (15%) występuje jako wolne jony. Magnez wpływa na stabilność termiczną mleka.
  • Kwas cytrynowy. Świeże mleko ma go od 0,16 do 0,2%. Jest on syntetyzowany w gruczole mlekowym; spełnia rolę czynnika buforującego. W 90% tworzy rozpuszczalne sole wapnia, magnezu i potasu.

Witaminy

  • Witamina A. Wytwarzana przez organizm krowy z karotenu pobieranego z paszą. Następnie z krwią transportowana jest do gruczołu mlecznego. Witamina A gromadzona jest głównie w tłuszczu mleka; zawiera on 0,002% witaminy A i 0,0001% karotenu.
  • Witamina D. Powstaje w organizmie zwierzęcia lub bezpośrednio w mleku, a nawet w paszy: ze steroli pod wpływem promieni UV. W mleku obecny jest cholesterol w ilości 0,012% i w witaminę D może się on przekształcać przez naświetlenie mleka lub po spożyciu.
  • Witamina E (tokoferol). Jej źródłem jest pasza zadawana krowie. Dlatego w sezonie pastwiskowym mleko jest bogatsze w witaminę E niż w sezonie zimowym.
  • Witaminy z grupy B. Są wytwarzane przez mikroflorę (drobnoustroje) w żwaczu i jelitach.
pH mleka wynosi ok 6,5

Skażenia mikrobiologiczne mleka

Powodem obecności bakterii patogennych są: choroba zwierzęcia, kontakt zwierzęcia z chorym człowiekiem, brak higieny doju i przetrzymywania mleka.
  • Rodzaj Salmonella. Obejmuje ok. 2 000 serotypów, z których wszystkie są chorobotwórcze. Nosicielem jest człowiek i zwierzęta gospodarskie, głównie kury, kaczki, świnie, a także gryzonie. Przyczyną skażenia mogą być też ścieki komunalne, skażony nawóz, owady. Bakterie salmonelli rosną w zakresie temperatur 5-46 °C i pH 6,6-8,2. Giną podczas pasteryzacji. Gatunki szczególnie chorobotórcze dla ludzi powodują ciężkie schorzenia: dur brzuszny (Salmonella typhi), dur rzekomy (Salmonella paratyphi). Wyróżnia się także gatunki salmonelli tzw. odzwierzęce: Salmonella enteritidis i Salmonella typhimurium. Wywołują one zatrucia pokarmowe tzw. salmonellozy, zwłaszcza po spożyciu żywności: mleko surowe, jaja, mięso. Czas inkubacji wynosi 6-8 godzin, a nawet do 72 godzin.
  • Rodzaj Staphylococcus. Gronkowce z tego rodzaju występują na powierzchni ciała człowieka i zwierząt; u krów szczególnie na błonach śluzowych i przewodach strzykowych. Można je spotkać w glebie i wodzie. Rosną w zakresie temperatur 15-46 °C i pH 4,2-9,3. Chorobotwórczy gatunek Staphylococcus aureus (gronkowiec złocisty) wywołuje ropnie skóry, zapalenie migdałków podniebiennych (angina), zatrucia pokarmowe, a u krów zapalenia wymienia. Zatrucie pokarmowe u ludzi przypisuje się spożyciu żywności zakażonej gronkowcem wytwarzającym toksyny odporne na działanie enzymów i kwasu żołądkowego. W ciągu kilku godzin od spożycia występują: biegunki, wymioty, które ustępują po wydaleniu z organizmu pokarmu zawierającego toksyny. Objawy zatrucia wystepują po spożyciu pokarmu zawierającego od 10^5 do 10^6 komórek gronkowca na 1 g produktu. Ciepłoodporność toksyn jest wysoka; wytrzymują ogrzewanie 100 °C przez 20 minut. W przypadku silnego skażenia mleka temperatura pasteryzacji nie likwiduje zagrożenia gronkowcem.
  • Rodzaj Shigella. Głównym źródłem zakażenia produktów jest chory człowiek. Osoby, które przebyły chorobę, mogą być nadal nosicielami bakterii. Potocznie zatrucie shigellą nazywa się "chorobą brudnych rąk", inaczej czerwonką bakteryjną. Objawia się gorączką, krwawą biegunką, szczególnie niebezpieczną dla małych dzieci. Bakterie uszkadzają nabłonek jelit i produkują toksyny, które przenikają do krwi, śluzów i kału. Shigella jest bardzo zakaźna; objawy choroby wywołuje od 10 do 100 komórek. Bakterie rosną najlepiej w temperaturze 10-40 °C. Dobrze znoszą niższe temperatury. Giną w temperaturze 56 °C. Czas inkubacji choroby to 1-7 dni.
  • Rodzaj Listeria. Obejmuje gatunki chorobotwórcze, jak i niechorobotwórcze. Do chorobotwórczych zalicza się Listeria monocytogenes. Rośnie w temperaturze 0-45 °c. Optymalna kwasowość pH 5-9. Źródłem chorobotwórczych są zwierzęta: psy, krowy, owce, świnie, owady. Dawka zakaźna: 100-1 000 żywych komórek bakterii. Trzeba zaznaczyć, że nawet niższe dawki mogą się namnażać w organizmie i później wywołać posocznicę. Mogą również oddziaływać na mózg i serce, a także przenikać do płodu. W przypadku epidemii wskaźnik śmiertelności wynosi 30%. Czas inkubacji: 2 dni do 3 tygodni. Najczęściej występuje w: mleku, serach twarogowych, mięsie, owocach, warzywach. Listeria są ciepłoodporne; przeżywają 80 °C przez 5 minut i mogą namnażać się w warunkach chłodniczych.
  • Rodzaj Yersinia. Obejmuje pałeczki rosnące bardzo dobrze w niskich temperaturach, nawet ujemnych. Są to tzw. psychotrofy. Źródłem zakażenia może być zwierzę domowe: kot, pies, świnia a także szczury. Zachorowanie na yersinię występuje po spożyciu żywności zawierającej 10^8-10^9 komórek. Najczęściej zakażona jest żywność: surowe mleko, lody, sery twarogowe, mięso. Yersinia rozwija się i namnaża na błonie śluzowej jelit przez 5-10 dni. Prowadzi to do zmian zapalnych jelit, owrzodzeń, gorączki, wymiotów i bólów brzucha przypominających zapalenie wyrostka. U osób dorosłych może powodować zapalenie stawów i dróg moczowych.
  • Rodzaj Campylobacter. Dominuje u bydła, zwłaszcza w jego układzie pokarmowym. Bakterie rosną w temperaturze 37-47 °C. Są wrażliwe na pasteryzację, a także na niską kwasowość. Do wywołania zakażenia konieczne jest spożycie surowych produktów pochodzenia zwierzęcego zawierających 10^4 bakterii. Campylobacter jejuni jest powszechnym patogenem człowieka. Wywołuje zapalenie jelit przez wytwarzanie toksyn: zaburzenia gastryczne występują po 2-5 dniach od spożycia; bardzo wysoka gorączka 40 °C, ból głowy, ostra biegunka.
  • Rodzaj Escherichia. Pałeczki są wrażliwe na niskie temperatury, jak i na ogrzewanie i temperatury powyżej 60 °C. Optymalna temperatura wzrostu to 37 °C, pH 4,2-9. W grupie Escherichia wyróżnia się enteropatogenne typy Escherichia coli, przyczyniające się do ciężkich biegunek wywołujących silne odwodnienie organizmu. Są też przyczyną tzw. biegunek podróżnych. Escherichia coli rośnie w jelitach, produkuje toksyny. Źródłem zakażenia jest mleko surowe, jaja, sałatki warzywne, ser biały. Escherichia może się namnażać w żywności niewłaściwie przechowywanej.
  • Wirusy. Żywność może być zakażona wtórnie lub pierwotnie i wtórnie przez zwierzęta. Zasadniczą rolę odgrywają tzw. enterowirusy.
    • Echo - to wirus zapalenia opon mózgowych.
    • Poliomyelitis - choroba Heinego-Medina.
    • Coxackie - zapalenie opon mózgowych, zapalenie dróg oddechowych.
    • Wirus zapalenia wątroby typu A (WZW) - przedostaje się drogą pokarmową; jest odporny na działanie czynników zewnętrznych.

Naturalne składniki mleka jako czynniki chorobotwórcze

  • Alergie na białka mleka. Występują najczęściej u dzieci i zanikają najpóźniej do 3 roku życia. Przyczyną może być:
    • β-lakto-globulina, nieobecna w mleku kobiecym
    • kazeina - czynnikiem alergicznym jest frakcja α. Alergia ta ustępuje przy zamianie mleka krowiego na kozie
    • α-lakto-albumina i albuminy surowicy krwi - najczęstsze objawy alergii na nie to wysypki, pokrzywka, biegunki, kaszel; może doprowadzić do astmy
  • Nietolerancja laktozy. Wynika z braku lub niedoboru w organizmie człowieka enzymu laktazy, który powinien występować naturalnie w jelicie cienkim człowieka. Wyróżnia się nietolerancję:
    • wrodzoną - dziecko nie posiada zdolności wytwarzania enzymu laktazy
    • pierwotną później - występującą u osób dorosłych, które przez kilka lat nie spożywały mleka; również w krajach afrykańskich, Chinach i u aborygenów
    • wtórną - będącą wynikiem stanów zapalnych żołądka, jelit, zabiegów chirurgicznych lub długotrwałej diety bezmlecznej. Prowadzi do całkowitego zaniku enzymu
  • Nietolerancja galaktozy. Zdarza się u dzieci z niedoborem enzymu lub kilku enzymów katalizujących. Galaktoza normalnie jest wychwytywana przez wątrobę i włączana w cykl przemian wewnątrzkomórkowych. Przy braku enzymów gromadzi się w moczu i prowadzi do schorzenia, tzw. galaktozemii. Ujawnia się to zaraz po urodzeniu objawiając się biegunką, wymiotami. U chorych dzieci eliminuje się z diety produkty z galaktozą, gdyż mogą zahamować wzrost i silnie zahamować rozwój umysłowy dziecka.

Enzymy rodzime mleka

  • Lipazy. Powodują syntezę tłuszczu w gruczole mlecznym, a później w mleku po udoju odszczepiają od glicerydów krótkie kwasy tłuszczowe. Powoduje to w mleku i jego przetworach, szczególnie schłodzonych, jełki smak i zapach. W mleku lipazy związane są głównie z kazeiną. Rozróżniamy 2 rodzaje lipolizy:
    • lipoliza spontaniczna, występująca najczęściej w mleku otrzymanym pod koniec laktacji lub krótko po wycieleniu. Ujawnia się bardzo szybko po doju, a do jej zaistnienia wystarcza schłodzenie mleka do temperatury niższej niż 15 °C. Mleko wykazujące ten rodzaj lipolizy określa się jako podatne naturalnie.
    • lipoliza indukowana, związana jest z przepompowaniem mleka, energicznym mieszaniem, spienieniem i zmianami temperatury.
Oba rodzaje lipoliz są hamowane przez światło słoneczne, metale: miedź i żelazo oraz temperaturę 80 °C przez 20 sekund.
  • Proteaza. Powoduje rozpad białek. Enzym związany jest z kazeiną. Przechodzi do skrzepu mleka. Może przyczyniać się do rozpadu białek w czasie dojrzewania serów podpuszczkowych. Ulega inaktywacji w temperaturze 90 °C w czasie 1 do 5 minut.
  • Fosfataza alkaliczna. Rozszczepia estry kwasu fosforowego, a także fosfor od kazeiny. Do 40% tego enzymu związane jest z kuleczkami tłuszczowymi. Aktywatorami fosfatazy alkalicznej są jony manganu i miedzi. Unieczynnia ją niska pasteryzacja, tj. 72 °C przez 15 sekund.
  • Fosfataza kwaśna. Część tego enzymu związana jest z kuleczkami tłuszczowymi, a część (70%) znajduje się w fazie wodnej mleka. Odszczepia fosfor od kazeiny, dlatego też może powodować rozpad miceli kazeinowych i tworzenie luźnego skrzepu. Jest enzymem wyjątkowo ciepłoodpornym. Podczas pasteryzacji wysokiej 95 °C przez 15 sekund ginie tylko 65% tego enzymu. Wykazano również obecność tej fosfatazy w mleku sterylizowanym, czyli 135 °C przez 1 sekundę.
  • Lizozyn. Mleko krowie zawiera go 0,13 mg/l. Powoduje uszkodzenie ścian komórkowych bakterii gram dodatnich. Wykazuje działanie bakteriostatyczne. Dużo tego enzymu zawiera leukocyty. Wytrzymuje ogrzewanie 100 °C, dlatego zawsze jest obecny w mleku pasteryzowanym.
  • Oksydaza ksantynowa. Jest enzymem katalizującym utlenianie związków aldehydów, purynów i ksantynów. Znajduje się w kuleczkach tłuszczowych. Ilość w mleku krowim to 160 mg/l. Ulega całkowitej inaktywacji w temperaturze 95 °C przez 15 sekund.
  • Katalaza. W mleku normalnym jest jej bardzo mało. Większe ilości znajdują się w mleku mastitisowym. Katalaza rozszczepia nadtlenek wodoru na H2O i O2. Unieczynnia ją pasteryzacja wysoka.
  • Peroksydaza. Katalizuje utlenianie amin, fenoli i kwasu askorbinowego. Występuje w połączeniu z białkami serwatkowymi w ilości od 30 do 100 mg/l. Wykazuje dużą ciepłoodporność. Ginie w temperaturze 100 °C.

Mleko w tradycji i kulturze

W niektórych kulturach (w Chinach, Japonii i wyspach Polinezji) mleko jest nie spożywane.
U niektórych ludów mleko miało znaczenie ceremonialne i było składane bogom i duchom w ofierze. Taka tradycja istniała i u dawnych Słowian, a jej pozostałością był zwyczaj pozostawiania na talerzyku odrobiny mleka dla duszków opiekuńczych.
W czasach starożytnych i biblijnych duże ilości mleka były synonimem bogactwa. Do wytworzenia dużej ilości mleka potrzebne były liczne stada bydła. Stąd wyrażenie "kraina mlekiem i miodem płynąca".
Publikacja wraz ze zdjęciami jest udostępniona w Encyklopedii "Zgapedia" części portalu zgapa.pl. Treść objęta jest licencją GNU FDL Wolnej Dokumentacji w wersji 1.3 lub dowolnej pózniejszej opublikowanej przez Free Software Foundation i została ona opracowana na podstawie Wikipedii, tutaj możesz znaleźć artykuł źródłowy oraz autorów. Warunki użytkowania Encyklopedii znajdziesz na tej stronie.
Prezentowane filmy poczhodzą z serwisu YouTube, portal zgapa.pl nie jest ich autorem i nie ponosi odpowiedzialności za ich treści.