Analiza matematyczna to zespół teorii obejmujący wiele ważnych działów matematyki.
Początkowo analiza matematyczna obejmowała jedynie to, co dzisiaj nazywamy rachunkiem różniczkowym i całkowym. Jej rozwój zainicjowały prace Leibniza i Newtona z początku XVII wieku.
Z czasem rachunek różniczkowy i całkowy, ograniczający się wcześniej do kartezjańskich przestrzeni rzeczywistych, objął swoim zakresem inne przestrzenie: przestrzenie zespolone (teoria funkcji holomorficznych), przestrzenie Banacha i Hilberta (wraz z odpowiadającymi im teoriami) oraz bardziej zaawansowane twory geometryczne (na przykład rozmaitości różniczkowalne).
W miarę rozwiązywania kolejnych problemów stawianych przez analizę matematyczną powstawały zupełnie nowe działy matematyki, które dziś wchodzą w skład analizy: Zaawansowanej analizy matematycznej nie można obecnie uprawiać bez znajomości algebry, topologii (w tym topologii algebraicznej) czy geometrii różniczkowej.

Link zewnętzny

Podręcznik analizy matematycznej "Advanced Mathematical Methods for Scientists and Engineers", (public domain; po angielsku)

Publikacja wraz ze zdjęciami jest udostępniona w Encyklopedii "Zgapedia" części portalu zgapa.pl. Treść objęta jest licencją GNU FDL Wolnej Dokumentacji w wersji 1.3 lub dowolnej pózniejszej opublikowanej przez Free Software Foundation i została ona opracowana na podstawie Wikipedii, tutaj możesz znaleźć artykuł źródłowy oraz autorów. Warunki użytkowania Encyklopedii znajdziesz na tej stronie.
Prezentowane filmy poczhodzą z serwisu YouTube, portal zgapa.pl nie jest ich autorem i nie ponosi odpowiedzialności za ich treści.