Czytaj więcej"/> Drukuj
Intuicjonizm w matematyce to pogląd filozoficzny w zakresie istnienia obiektów matematycznych. Intuicjonizm jest prądem blisko związanym z finityzmem i innymi nurtami konstruktywizmu. Powstał głównie w związku z pojawieniem się teorii mnogości i paradoksów ujawnionych w jej ramach, jednak jego kontekst jest szerszy i ogólnie obejmuje odpowiedź na problemy wynikające z koncepcji nieskończoności i granicy w matematyce. Intuicjoniści uważają, że pewne atrybuty niektórych prostych obiektów matematycznych, jak np. liczb naturalnych czy obiektów geometrycznych lub własności przestrzeni, są nam dane i są dostępne poznaniu dzięki intuicjom jakie posiadamy na ich temat. Uważają oni, że treść twierdzeń matematycznych, a zwłaszcza mechanizmy prowadzące do rozwoju wiedzy matematycznej w znacznej mierze dostępne są dzięki intuicji, możliwości wglądu i zrozumienia ich znaczenia dzięki pewnym często pierwotnym intuicjom umysłu matematyków. Głównym twórcą intuicjonizmu był Luitzen Egbertus Jan Brouwer, który proponował budowę spójnej bazy zasad matematycznych w celu budowy systemu podstaw matematyki z pominięciem koncepcji, które intuicjonizm krytykuje, a więc niekonstruktywne dowody, żonglowanie nieskończonością aktualną itp.
Intuicjonizm neguje prawdziwość niektórych z aksjomatów logiki, a zwłaszcza aksjomat wyłączonego środka (p lub ~p) i reguła odrywania, twierdząc, że w niektórych przypadkach fakt udowodnienia, że prawdziwe jest p nie pozwala stwierdzić, że nieprawdziwe jest nie p (
Intuicjonizm stoi w niejakiej opozycji w stosunku do poglądów upatrujących sensu twierdzeń matematycznych wyłącznie w ich wyprowadzalności z aksjomatów, jak logicyzm, a zwłaszcza formalizm. Szczególnie mocno podkreśla on, że matematyka zawiera pewną treść, zaś udowadnianie i tworzenie nowych twierdzeń jest aktem twórczym nie polegającym wyłącznie na żonglowaniu symbolami matematycznymi.
Program intuicjonizmu realizowany przez Brouwera i jego uczniów nie doczekał się wielu kontynuatorów, pomimo pewnych sukcesów i udanej przebudowy niektórych działów matematyki, by pozostawały w zgodzie z zasadniczymi tezami budowniczych szkoły intuicjonistycznej. Współcześnie intuicjonizm nie ma wielkiego znaczenia dla rozwoju matematyki, zwłaszcza jako program budowy jej fundamentów i pozostaje raczej prywatnym poglądem intuicjonistów na znaczenie tez matematycznych.

Przedstawiciele

Materiał wydrukowany z portalu zgapa.pl dnia 2020-07-06 00:22:36